Math 22: Linear Algebra and Applications

Farhan Sadeek

Placement Test Last Updated: August 14, 2025

Contents

1	Line	ear Equations in Linear Algebra	2		
	1.1	Systems of Linear Equations	2		
	1.2	Row Reduction and Echelon Forms	2		
	1.3	Vector Equations	2		
	1.4	The Matrix Equation Ax = b	2		
	1.5	Solution Sets of Linear Systems	2		
	1.6	Linear Independence	2		
	1.7	Linear Transformations; Matrix Representations	2		
2	Mat	crix Algebra	3		
	2.1	Matrix Operations	3		
	2.2	The Inverse of a Matrix	3		
	2.3	The Inverse Matrix Theorem	3		
	2.4	Coordinates, Dimension, and Rank	3		
3	Determinants				
	3.1	Introduction to Determinants	4		
	3.2	Properties of Determinants	4		
4	Vector Spaces				
	4.1	Vector Spaces and Subspaces	5		
	4.2	Null Space, Column Space, and Linear Transformations	5		
	4.3	Linearly Independent Sets; Bases	5		
	4.4	The Matrix of a Linear Transformation	5		
	4.5	Change of Basis / Composition of Linear Transformations	5		
	4 6	Applications: Markov Chains	5		

5	Eige	envalues and Eigenvectors	6		
	5.1	Eigenvectors and Eigenspaces	6		
	5.2	The Characteristic Equation	6		
	5.3	Diagonalization	7		
	5.4	Eigenvalues and Linear Transformations	7		
	5.5	Iteration Method for Approximating Eigenvalues	7		
6	Orthogonality and Least Squares				
	6.1	Inner Product, Length, and Orthogonality	8		
	6.2	Orthogonal Sets	8		
	6.3	Orthogonal Projections	8		
	6.4	The GramSchmidt Process / Least Squares Problems	8		
7	Symmetric Matrices and Quadratic Forms				
	7.1	Diagonalization of Symmetric Matrices	9		
	7.2	Singular Value Decomposition (SVD)	9		
	7.3	Principal Component Analysis (PCA) and Eigenfaces	9		

1 Linear Equations in Linear Algebra

1.1 Systems of Linear Equations

Definition 1.1.1 (Linear Equation)

A **linear equation** in the variables x_1, x_2, \ldots, x_n is an equation that can be written in the form

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$

where a_1, a_2, \ldots, a_n and b are constants, called the **coefficients** and **constant term**, respectively.

For example, $3x_1 - 2x_2 + 5x_3 = 7$ is a linear equation in the variables x_1 , x_2 , x_3 with coefficients 3, -2, 5 and constant term 7.

Definition 1.1.2 (System of Linear Equations)

A **system of linear equations** is a collection of one or more linear equations involving the same set of variables.

Definition 1.1.3 (Solution)

A **solution** to a system of linear equations is an assignment of values to the variables that satisfies all equations in the system simultaneously.

1.2 Row Reduction and Echelon Forms

- 1.3 Vector Equations
- **1.4** The Matrix Equation Ax = b
- 1.5 Solution Sets of Linear Systems
- 1.6 Linear Independence
- 1.7 Linear Transformations; Matrix Representations

- 2 Matrix Algebra
- 2.1 Matrix Operations
- 2.2 The Inverse of a Matrix
- 2.3 The Inverse Matrix Theorem
- 2.4 Coordinates, Dimension, and Rank

- 3 Determinants
- 3.1 Introduction to Determinants
- 3.2 Properties of Determinants

4 Vector Spaces

- 4.1 Vector Spaces and Subspaces
- 4.2 Null Space, Column Space, and Linear Transformations
- 4.3 Linearly Independent Sets; Bases
- 4.4 The Matrix of a Linear Transformation
- 4.5 Change of Basis / Composition of Linear Transformations
- 4.6 Applications: Markov Chains

5 Eigenvalues and Eigenvectors

5.1 Eigenvectors and Eigenspaces

Definition 5.1.1 (Eigenvector and Eigenvalue)

Let A be an $n \times n$ matrix. A nonzero vector $\mathbf{v} \in \mathbb{R}^n$ is called an **eigenvector** of A if there exists a scalar λ such that

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

The scalar λ is called the **eigenvalue** corresponding to the eigenvector \mathbf{v} .

Theorem 5.1.2

The eigenvalues of a triangular matrix are the entries on its main diagonal.

Proof. For simplicity, let's consider the 3×3 matrix. If A is upper triangular, then $A - \lambda I$ has the form

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} = \begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ 0 & a_{22} - \lambda & a_{23} \\ 0 & 0 & a_{33} - \lambda \end{bmatrix}$$

The scalar λ is an eigenvalue of A if and only if $A - \lambda I$ is not invertible, which occurs if and only if the determinant is zero:

$$\det(A - \lambda I) = 0.$$

Lemma 5.1.3

Let A be a $n \times n$ matrix. Then A is invertible if and only if 0 is not an eigenvalue of A.

Theorem 5.1.4

If v_1, v_2, \ldots, v_k are eigenvectors of a matrix A corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$, then the set $\{v_1, v_2, \ldots, v_k\}$ is linearly independent.

5.2 The Characteristic Equation

Example 5.2.1

Find the eigenvalues and eigenvectors of the matrix

$$\begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$$

Definition 5.2.2 (Determinant)

The **determinant** of a square matrix A is a scalar value that can be computed from the elements of A and encodes certain properties of the linear transformation described by A. The determinant is denoted as det(A) or |A|.

Example 5.2.3

Compute det(A) for the matrix

$$\begin{bmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{bmatrix}$$

Solution.

- 5.3 Diagonalization
- 5.4 Eigenvalues and Linear Transformations
- 5.5 Iteration Method for Approximating Eigenvalues

- 6 Orthogonality and Least Squares
- 6.1 Inner Product, Length, and Orthogonality
- 6.2 Orthogonal Sets
- **6.3 Orthogonal Projections**
- 6.4 The GramSchmidt Process / Least Squares Problems

7 Symmetric Matrices and Quadratic Forms

- 7.1 Diagonalization of Symmetric Matrices
- 7.2 Singular Value Decomposition (SVD)
- 7.3 Principal Component Analysis (PCA) and Eigenfaces