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2 First Order Differential Equations

2.1 Linear Equations: Method of Integrating Factors

Definition 2.1.1 (First-order Linear Differential Equation)

A first-order linear differential equation is an equation that can be written in the standard form:

y ′ + p(t)y = g(t)

where p(t) and g(t) are given functions of the independent variable t. The equation is called linear
because the dependent variable y and its derivative y ′ appear to the first power and are not multiplied

together.

If g(t) = 0, the equation is called homogeneous:

y ′ + p(t)y = 0

Otherwise, it is called non-homogeneous.

Fact 2.1.2 (Method of Integrating Factors)

To solve the first-order linear differential equation y ′ + p(t)y = g(t):

1. Calculate the integrating factor: µ(t) = e
∫
p(t)dt

2. Multiply both sides of the equation by µ(t):

µ(t)y ′ + µ(t)p(t)y = µ(t)g(t)

3. Recognize that the left side is the derivative of µ(t)y :

d

dt
[µ(t)y ] = µ(t)g(t)

4. Integrate both sides:

µ(t)y =

∫
µ(t)g(t)dt + C

5. Solve for y :

y =
1

µ(t)

[∫
µ(t)g(t)dt + C

]

Example 2.1.3 (Standard Form Example)

Solve the differential equation y ′ + 2ty = t2.

Solution. This is already in standard form with p(t) = 2t and g(t) = t2.

4



Step 1: Find the integrating factor:

µ(t) = e
∫
2tdt = et

2

Step 2: Multiply the equation by µ(t):

et
2

y ′ + 2tet
2

y = t2et
2

Step 3: Recognize the left side as a derivative:

d

dt
[et

2

y ] = t2et
2

Step 4: Integrate both sides:

et
2

y =

∫
t2et

2

dt

Using integration by parts or substitution, we get:

et
2

y =
1

2
et
2

(t2 − 1) + C

Step 5: Solve for y :

y =
1

2
(t2 − 1) + Ce−t2

Example 2.1.4 (Equation Not in Standard Form)

Solve the differential equation (4 + t2)dydt + 2ty = 4t.

Solution. First, we need to put this in standard form by dividing by (4 + t2):

dy

dt
+
2t

4 + t2
y =

4t

4 + t2

Now we have p(t) = 2t
4+t2

and g(t) = 4t
4+t2

.

Step 1: Find the integrating factor:

µ(t) = e
∫

2t

4+t2
dt

Let u = 4 + t2, then du = 2tdt:∫
2t

4 + t2
dt =

∫
1

u
du = ln |u| = ln(4 + t2)

Therefore: µ(t) = e ln(4+t
2) = 4 + t2

Step 2: Multiply by the integrating factor:

(4 + t2)
dy

dt
+ 2ty = 4t

Step 3: The left side is d
dt [(4 + t

2)y ]:

d

dt
[(4 + t2)y ] = 4t
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Step 4: Integrate:

(4 + t2)y =

∫
4tdt = 2t2 + C

Step 5: Solve for y :

y =
2t2 + C

4 + t2

Example 2.1.5 (Initial Value Problem)

Find the general solution of the differential equation

dy

dt
− 2y = 4− t

and solve the initial value problem with y(0) = 1. Discuss the behavior as t →∞.

Solution. This is in standard form with p(t) = −2 and g(t) = 4− t.
Step 1: Find the integrating factor:

µ(t) = e
∫
−2dt = e−2t

Step 2-3: Multiply and recognize:

d

dt
[e−2ty ] = e−2t(4− t)

Step 4: Integrate the right side using integration by parts:∫
e−2t(4− t)dt =

∫
4e−2tdt −

∫
te−2tdt

= −2e−2t −
(
−
1

2
te−2t −

1

4
e−2t

)
= −2e−2t +

1

2
te−2t +

1

4
e−2t

= e−2t
(
−2 +

t

2
+
1

4

)
= e−2t

(
t

2
−
7

4

)
Therefore:

e−2ty = e−2t
(
t

2
−
7

4

)
+ C

Step 5: General solution:

y =
t

2
−
7

4
+ Ce2t

Initial condition: y(0) = 1:

1 =
0

2
−
7

4
+ C ⇒ C = 1 +

7

4
=
11

4

Particular solution:
y =

t

2
−
7

4
+
11

4
e2t
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Behavior as t →∞: Since e2t grows exponentially, y(t)→ +∞ as t →∞.

Example 2.1.6 (Homogeneous Linear Equation)

Solve y ′ + 3y = 0 with y(0) = 2.

Solution. For a homogeneous equation y ′ + p(t)y = 0, we can solve by separation:

dy

y
= −p(t)dt

Integrating: ln |y | = −
∫
p(t)dt + C

With p(t) = 3:

ln |y | = −3t + C ⇒ y = Ae−3t

Using y(0) = 2: A = 2

Therefore: y = 2e−3t

Remark 2.1.7 (Structure of Solutions). The general solution of a first-order linear equation y ′+p(t)y = g(t)

has the form:

y = yh + yp

where:

• yh = Ce
−

∫
p(t)dt is the general solution to the homogeneous equation

• yp is any particular solution to the nonhomogeneous equation

As t →∞:

• If p(t) > 0, then yh → 0 (transient behavior)

• If p(t) < 0, then yh grows exponentially

• The long-term behavior is determined by yp when p(t) > 0

2.2 Separable Equations

2.3 Modeling with First Order Differential Equations

2.4 Differences Between Linear and Nonlinear Equations
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Theorem 2.4.1 (Existence and Uniqueness Theorem for First-Order Linear Equations)

If the functions p and g are continous on an open interval I : α < t < β containing the point t = t0,

then there exists a unique function y = ϕ(t) that satisfies the differential equation

y ′ + p(t)y = g(t)

for each t in I, and that also satisifies the initial condition

y(t0) = y0

where y0 is an arbitrary prescribed inital value.

Theorem 2.4.2 (Existence and Uniqueness Theorem for First-Order Linear Equations)

Let the functions f and ∂f∂y be continuous in some rectangle α < t < β, γ < y < δ containing the point

(t0, y0). Then, in some interval t0 − h < t < t0 + h contained in α < t < β, there is a unique solution

y = ϕ(t) of the initial value problem

y ′ = f (t, y), y(t0) = y0.

Example 2.4.3
Find an interval in which the initial value problem

ty ′ + 2y = 4t2, y(1) = 2

has a unique solution. Then do the same when the initial value is changed to y(−1) = 2.

Example 2.4.4
Find an interval in which the initial value problem

dy

dt
=
3x2 + 4x + 2

2(y − 1) , y(0) = −1

has a unique solution. Then do the same when the initial value is changed to y(0) = 1.

Example 2.4.5
Consider the initial value problem

y ′ = y
1
3 , y(0) = 0

2.5 Autonomous Equations and Population Dynamics

2.6 Exact Equation and Integrating Factors
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Definition 2.6.1 (Exact Differential Equation)

A first-order differential equation of the form

M(x, y) + N(x, y)y ′ = 0

or equivalently written as

M(x, y)dx + N(x, y)dy = 0

is called an exact differential equation if there exists a function ψ(x, y) such that‘’

∂ψ

∂x
= M(x, y) (1)

∂ψ

∂y
= N(x, y) (2)

Theorem 2.6.2 (Test for Exactness)

Let the functions M, N, My , and Nx , where subscripts denote partial derivatives, be continuous in the

rectangular region R : α < x < β, γ < y < δ. Then equation

M(x, y) + N(x, y)y ′ = 0

is an exact differential equation in R if and only if

My (x, y) = Nx(x, y)

at each point of R. That is, there exists a function ψ satisfying equations

ψx(x, y) = M(x, y), ψy (x, y) = N(x, y),
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3 Second Order Linear Differential Equations

3.1 Homogeneous Equations with Constant Coefficients

Definition 3.1.1
A second-order linear homogeneous differential equation with constant coefficients has the general

form:

ay ′′ + by ′ + cy = 0

where a, b, and c are real constants with a ̸= 0.

The key insight for solving these equations is that exponential functions have the property that their

derivatives are proportional to themselves, making them natural candidates for solutions.

Theorem 3.1.2 (Characteristic Equation Method)

To solve the differential equation ay ′′ + by ′ + cy = 0:

1. Assume an exponential solution: Let y = ert where r is a constant to be determined.

2. Compute derivatives:

y ′ = rert

y ′′ = r2ert

3. Substitute into the differential equation:

a(r2ert) + b(rert) + c(ert) = 0

4. Factor out ert (which is never zero):

ert(ar2 + br + c) = 0

5. Obtain the characteristic equation:

ar2 + br + c = 0

6. Solve using the quadratic formula:

r =
−b ±

√
b2 − 4ac
2a

The nature of the roots determines the form of the general solution. The discriminant ∆ = b2 − 4ac
plays a crucial role in determining the behavior of solutions.
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Theorem 3.1.3 (General Solutions Based on Root Types)

Let r1 and r2 be the roots of the characteristic equation ar2 + br + c = 0. Then:

Case 1: Real and Distinct Roots (∆ > 0)

y(t) = c1e
r1t + c2e

r2t

where c1 and c2 are arbitrary constants determined by initial conditions.

Case 2: Complex Conjugate Roots (∆ < 0) If r1,2 = α ± βi where α = − b2a and β =
√
4ac−b2
2a ,

then:

y(t) = eαt(c1 cos(βt) + c2 sin(βt))

This represents oscillatory motion with exponential growth/decay.

Case 3: Repeated Real Root (∆ = 0) If r1 = r2 = r = − b2a , then:

y(t) = (c1 + c2t)e
rt

The factor t appears due to the need for linear independence.

Remark 3.1.4. The physical interpretation varies by case:

• Distinct real roots: Exponential growth/decay (no oscillation)

• Complex roots: Damped or growing oscillations

• Repeated roots: Critical damping (fastest approach to equilibrium without oscillation)
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Example 3.1.5
Consider the differential equation y ′′ − 3y ′ + 2y = 0.

Step 1: Form the characteristic equation:

r2 − 3r + 2 = 0

Step 2: Factor or use quadratic formula:

(r − 1)(r − 2) = 0

So r1 = 1 and r2 = 2.

Step 3: Since we have real and distinct roots, the general solution is:

y(t) = c1e
t + c2e

2t

Verification: We can verify this solution by substitution:

y = c1e
t + c2e

2t

y ′ = c1e
t + 2c2e

2t

y ′′ = c1e
t + 4c2e

2t

Substituting: y ′′ − 3y ′ + 2y = (c1et + 4c2e2t)− 3(c1et + 2c2e2t) + 2(c1et + c2e2t) = 0

3.2 Solutions of Linear Homogeneous Equations; the Wronskian

Definition 3.2.1 (Wronskian)

The Wronskian of two functions f and g is defined as

W (f , g)(t) = f (t)g′(t)− g(t)f ′(t)

Example 3.2.2
Let f (t) = et and g(t) = e2t . Then we have:

W (f , g)(t) = et(2e2t)− e2t(et) = 2e3t − e3t = e3t

Since W (f , g)(t) ̸= 0 for all t, the functions f and g are linearly independent.

Theorem 3.2.3
If f and g are differentiable functions, on an open interval I, and if W (f , g)(t0) ̸= 0, for some point

t0 ∈ I, then f and g are linearly independent on I. Moreover, if f and g are linearly dependent on I,

then the Wronskian W (f , g)(t) = 0 for every t ∈ I.
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Theorem 3.2.4 (Abel’s Theorem)

If y1 and y2 are two solutions of the second-order linear homogeneous differential equation

L[y ] = y ′′ + p(t)y ′ + q(t)y = 0

on an interval I, then the Wronskian W (y1, y2)(t) satisfies

W (y1, y2)(t) = W (y1, y2)(t0) exp

[
−
∫ t
t0

p(s)ds

]
for any t0 ∈ I.

Theorem 3.2.5
Let y1 and y2 be the solutions of the second-order linear homogeneous differential equation

L[y ] = y ′′ + p(t)y ′ + q(t)y = 0

where p and q are continuous functions on an interval I. Then the Wronskian W (y1, y2)(t) satisfies

W (y1, y2)(t) = W (y1, y2)(t0) exp

[
−
∫ t
t0

p(s)ds

]
for any t0 ∈ I.

3.3 Complex Roots of the Characteristic Equation

We continue our discussion of the second-order linear differential equation

ay ′′ + by ′ + cy = 0

where a, b, and c are constants. Here we the characteristic equation is

ar2 + br + c = 0

and the general solution is

y(t) = eαt(c1 cos(βt) + c2 sin(βt))

where α = − b2a and β =
√
4ac−b2
2a . However, b2−4ac could be negative, leading to complex roots. Assuming

that they are complex, we can write the roots as

r1 = λ+ iµ, r2 = λ− iµ

where λ and µ are real. Therefore the expressions for y are

y(t) = eλt(c1 cos(µt) + c2 sin(µt))
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Example 3.3.1
Find the general solution of the differential equation

y ′′ + y ′ + 9.25y = 0.

Also find the solution that satisfies the initial conditions y(0) = 2 and y ′(0) = 0.8.

Solution.

Example 3.3.2
Find the solution of the initial value problem

16y ′′ − 8y ′ + 145y = 0, y(0) = −2, y ′(0) = 1.

Solution.

Example 3.3.3
Find the general solution of the differential equation

y ′′ + 9y = 0.

3.4 Repeated Roots; Reduction of Order

We know how to solve the equation

ay ′′ + by ′ + cy = 0 (1)

when the roots of the characteristic equation

ar2 + br + c = 0 (2)

either are real and different or are complex conjugates. Now we consider the third possibility, namely, that

the two roots r1 and r2 are equal. This case is transitional between the other two and occurs when the

discriminant b2 − 4ac is zero. Then it follows from the quadratic formula that

r1 = r2 = −
b

2a
. (3)

The difficulty is immediately apparent; both roots yield the same solution

y1(t) = e
−bt/(2a) (4)

of the differential equation (1), and it is not obvious how to find a second solution.

For the polynomial ay ′′ + by ′ + cy = 0 the characteristic equation is

ar2 + br + c = 0

14



If the roots are repeated, i.e., r1 = r2 = r , then the general solution is

y(t) = (c1 + c2t)e
rt

Example 3.4.1
Solve the differential equation

y ′′ + 4y ′ + 4y = 0

Example 3.4.2
Find the solution of the initial value problem

y ′′ − y ′ +
1

4
y = 0, y(0) = 2, y ′(0) =

1

3
.

3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Now, we could have a situation where the differential equation might also be non-homogeneous which is

L[y ] = y ′′ + p(t)y ′ + q(t)y = g(t)

where p, q. and g are given (continous) functions on the open interval I. The equation

L[y ] = y ′′ + p(t)y ′ + q(t)y = 0

is very useful in solving this problem.

Theorem 3.5.1
If Y1 and Y2 are two solutions of the non-homogeneous linear differential equation L[y ] = y ′′ + p(t)y ′ +

q(t)y = g(t), then their difference Y1 − Y2 is a solution of the corresponding homogeneous differential

equation (2). If, in addition, y1 and y2 form a fundamental set of solutions of equation L[y ] = y ′′ +

p(t)y ′ + q(t)y = 0, then

Y1(t)− Y2(t) = c1y1(t) + c2y2(t)

where c1 and c2 are certain constants.

Theorem 3.5.2
The general solution fo the non-homogeneous equation L[y ] = y ′′ + p(t)y ′ + q(t)y = g(t) can be

expressed as

y = ϕ(t) = c1y1(t) + c2y2(t) + Y (t)

where y1 and y2 form a fundamental set of solutions of the corresponding homogeneous equation

L[y ] = y ′′ + p(t)y ′ + q(t)y = 0 and where Y is any particular solution of the non-homogeneous

equation.
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