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1 January 5, 2026

Today was more like the introduction to the course. He said that the exams would be in-person rather than

take-home this term. The weekly homework assignments would be released on Wednesdays and due on the

upcoming Friday of the following week. So, today we will talk about sets and functions.

1 Sets

Definition 1 (Set)

A set is a collection of objects. We denote sets by capital letters such as A,B, C, . . .. We denote the

elements of a set by lowercase letters such as a, b, c, . . .. If a is an element of A, we write a ∈ A. If a

is not an element of A, we write a /∈ A.

Theorem 2
Prove that if X ⊂ S and Y ⊂ S, then (Xc ∩ Y c) = (X ∪ Y )c .

Proof. Let x ∈ (Xc ∩ Y c). Then x ∈ Xc and x ∈ Y c . Therefore, x /∈ X and x /∈ Y . So, x /∈ X ∪ Y .

Therefore, x ∈ (X ∪ Y )c .
Now, let x ∈ (X ∪ Y )c . Then x /∈ X ∪ Y . Therefore, x /∈ X and x /∈ Y . So, x ∈ Xc and x ∈ Y c .

Therefore, x ∈ (Xc ∩ Y c).
Therefore, (Xc ∩ Y c) = (X ∪ Y )c .

Theorem 3
Prove that if I and S are sets and if for each i ∈ I we have Xi ⊂ S, then (

⋂
i∈I Xi)

c =
⋃
i∈I X

c
i .

Proof. We will prove set equality by showing both inclusions.

(⊆) Suppose x ∈
(⋂
i∈I Xi

)c . By the definition of complement, x /∈
⋂
i∈I Xi . This means that there

exists some i ∈ I such that x /∈ Xi . Therefore, x ∈ Xci , and so x ∈
⋃
i∈I X

c
i . Hence,

x ∈ (
⋂
i∈I
Xi)
c =⇒ x ∈

⋃
i∈I
Xci ,

and thus (
⋂
i∈I Xi)

c ⊆
⋃
i∈I X

c
i .

(⊇) Conversely, let x ∈
⋃
i∈I X

c
i . Then there exists some i ∈ I such that x ∈ Xci , i.e., x /∈ Xi . Therefore,

x is not in every Xi , so x /∈
⋂
i∈I Xi , which means x ∈ (

⋂
i∈I Xi)

c . Thus,

x ∈
⋃
i∈I
Xci =⇒ x ∈ (

⋂
i∈I
Xi)
c ,

so
⋃
i∈I X

c
i ⊆ (

⋂
i∈I Xi)

c .
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Combining the two inclusions, we have

(
⋂
i∈I
Xi)
c =

⋃
i∈I
Xci .

2 Functions

Definition 4 (Function)

A function from a set A to a set B is a subset f ⊂ A × B such that for each a ∈ A, there exists a

unique b ∈ B such that (a, b) ∈ f .

We denote a function f from A to B as f : A→ B. We denote the element f (a) as the image of a under

f . We denote the set of all functions from A to B as BA.

Definition 5 (Image)

The image of a function f : A→ B is the set {b ∈ B | ∃a ∈ A(f (a) = b)}.

2 January 7, 2026

Today is the first day of actual lecture; the professor said that the first day was just more as introduction.

We are learning more about real numbers today. We can assume that we have learnt set theory and high

school arithmetic. Today’s topic of discussion is more like Basic Arithmetic and Elementary Algebra.

All of analysis and calculus is built on top of real numbers.

3 The Field Property

Definition 6 (Field)

A field is a structure that consists of a set F and two distinguished elements 0, 1 ∈ F and two functions,

+,× (binary operations), F × F → F such that the following axioms are satisfied:

(I) Commutativity: For all a, b ∈ F , a + b = b + a and a × b = b × a.

(II) Associativity: For all a, b, c ∈ F , (a + b) + c = a + (b + c) and (a × b)× c = a × (b × c).

(III) Distributivity: For all a, b, c ∈ F , a × (b + c) = (a × b) + (a × c).

(IV) Neutral Elements: For all a ∈ F , a + 0 = a and a × 1 = a.

(V) Inverses: For all a ∈ F , there exists b ∈ F such that a + b = 0. For all a ∈ F \ {0}, there exists

b ∈ F such that a × b = 1.
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Some examples of fields are R, 0, 1,+,×, Q, 0, 1,+,×, C, 0, 1,+,×, Z/2Z, 0, 1,+,×. So, if we can prove

this for one field that means it should be true for all fields, and there are finitely many fields.

Now, we will learn what is implied by the field axioms. Here are the axioms:

(F1) Sums/products of several elements can be written without parentheses. For example, (a+b)+(c+d).

(F2) The product of zero and any element is zero: a × 0 = 0.

(F3) The elements b and c from Axiom I are unique meaning b = −a and c = 1/a. Assume that a+b = 0,

and a + d = 0. So this means that b = d . We can write this as b = −a and d = −a. Therefore,

b = d .

(F4) The elements b and c from Axiom I are unique meaning b = −a and c = 1/a. Assume that a+b = 0,

and a + d = 0. So this means that b = d . We can write this as b = −a and d = −a. Therefore,

b = d .

(F5) a · 0 = 0.

(F6) −(−a) = a.

(F7) (a−1)−1 = a.

(F8) −(a + b) = (−a) + (−b).

(F9) (−a) · (−b) = a · b.

4 Order

Definition 7 (Ordered Field)

An ordered field is a field F with a subset P ⊂ F called the set of positive numbers such that the

following axioms are satisfied on top of the field axioms:

(P1) If a, b ∈ P , then a + b ∈ P and a × b ∈ P .

(P2) For each a ∈ F , exactly one of the following is true: a ∈ P , a = 0, or −a ∈ P . (Law of

Trichotomy)

The ordered field axioms have some more properties such as

(O1) If a, b ∈ P , then a > b, a = b, or a < b.

(O2) If a, b, c ∈ P , then a > b and b > c implies a > c .

(O5) The product of two negative numbers is positive.

(O9) Rules of elementary arithmetic work out as consequences of the ordered field axioms.

(O10) If a > b, then a + c > b + c for all c ∈ F .
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Theorem 8
Prove that if a, b ∈ F and a > b, then a + c > b + c for all c ∈ F .

Proof. Since a > b, then a − b ∈ P . Therefore, a − b + c ∈ P . Therefore, a + c > b + c .

3 January 9, 2026

5 The Least Upper Bound Property

Today we will discuss about the axioms of the real number sytems.

Definition 9 (Least Upper Bound)

A least upper bound of a set S ⊂ F is an element a ∈ F such that a is an upper bound of S and if b

is any upper bound of S, then a ≤ b.

Fact 10
Now, we will discuss some facts about the least upper bound.

• Z ⊂ Q has no least upper bound in Q. So, if we take the set of all integers and consider it as a

subset of the rational numbers, it has no least upper bound in the rational numbers.

• With F = Q, S = {x ∈ Q | x2 ≥ 2} has no least upper bound in Q.

• ∅ ⊂ R has a an upper bound, but it has no least upper bound.

Definition 11 (Maximum)

A maximum of a set S ⊂ F is an element a ∈ S such that a is an upper bound of S and if b is any

upper bound of S, then a ≥ b.

Definition 12 (Completely Ordered Field)

A completely ordered field is an ordered field F such that it also satisfies the least uppoer bound

property which is if S ⊂ F and

• S ̸= ∅

• S has an upper bound

Proof. Q are not completey ordered
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Lemma 13
For every X ∈ R, there exist n ∈ Z such that n < X.

Proof. Suppose towards a contradiction that for every n ∈ Z, n ≥ X. Then X is an upper bound of Z.

Therefore, X is an upper bound of N. Therefore, X is a least upper bound of N. Therefore, X is a rational

number. Therefore, X is a real number. Therefore, X is a rational number.

Lemma 14
For any X ∈ R, there exist n ∈ Z such that n = 1, 2, 3, . . . such that 1n < X.

Proof. Suppose towards a contradiction that for every n ∈ Z, n = 1, 2, 3, . . . such that 1n ≥ X. Then X

is a lower bound of N. Therefore, X is a lower bound of Z. Therefore, X is a greatest lower bound of Z.

Therefore, X is a rational number. Therefore, X is a real number. Therefore, X is a rational number.

Lemma 15
For every x ∈ R and ϵ > 0, there exist r ∈ Q such that x − ϵ < r < x + ϵ or |x − r | < ϵ.

Proof. Let S = {x ∈ R | x ≥ 0, x2 ≤ a}. Since, 0 ∈ R and 02 ≤ a, then 0 ∈ S. Therefore, S is non-empty.

Since, a ∈ R and a ≥ 0, then a ∈ S. Therefore, S is bounded above by a. Therefore, S has a least upper

bound b. We will show that b2 = a. Suppose towards a contradiction that b2 ̸= a. Then b2 < a or b2 > a.

If b2 < a, then b is not an upper bound of S. This is a contradiction. If b2 > a, then b is not a least upper

bound of S. This is a contradiction. Therefore, b2 = a. Therefore, we proved that b exists.

4 January 12, 2026

6 The Existence of the Square Roots

Today we started the class with the discussion that square roots exists for real numbers. Then we moved

on to talk about the metric space and the properties of the metric space.

Proposition 16
For every a ∈ R, a > 0, there exists b ∈ R, b > 0 such that b2 = a. Moreover, b is unique.

Proof. We will prove the uniqueness property first and then the existence property. Suppose towards a

contradiction that b2 = a and c2 = a with b > 0 and c > 0. Assume that b ̸= c . Without loss of generality,

assume that b > c . Then b2 > c2. Therefore, a > a. This is a contradiction. Therefore, b = c . Therefore,

we proved that b is unique.

Now, we will prove the existence property. Let S = {x ∈ R | x ≥ 0, x2 ≤ a}. Since, 0 ∈ R and 02 ≤ a,
then 0 ∈ S. Therefore, S is non-empty. Since, a ∈ R and a ≥ 0, then a ∈ S. Therefore, S is bounded above
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by a. Therefore, S has a least upper bound b. We will show that b2 = a. Suppose towards a contradiction

that b2 ̸= a. Then b2 < a or b2 > a. If b2 < a, then b is not an upper bound of S. This is a contradiction.

If b2 > a, then b is not a least upper bound of S. This is a contradiction. Therefore, b2 = a. Therefore,

we proved that b exists.

So, this is the end of Chapter 2, and we will move to Chapter 3, which is about metric spaces.

7 Metric Spaces

x

y

y = x2

Definition 17 (Metric Space)

A metric space is a set E together with a function d : E × E → R that satisfies the following axioms:

(M1) d(p, q) ≥ 0 for all p, q ∈ E.

(M2) d(p, q) = 0 if and only if p = q.

(M3) d(p, q) = d(q, p) for all p, q ∈ E.

(M4) d(p, q) ≤ d(p, r) + d(r, q) for all p, q, r ∈ E.
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Example 18
E = any set, such as Z, and

d(p, q) =

0 if p = q

1 if p ̸= q

Now we will check the axioms of the metric space. So the first three axioms are satisfied. Now, we will

check the fourth axiom. So, we have d(p, q) ≤ d(p, r)+d(r, q). Since, d(p, q) = 0 if and only if p = q,

and d(p, r) = 0 if and only if p = r , and d(r, q) = 0 if and only if r = q, then d(p, q) ≤ d(p, r)+d(r, q)
is satisfied. Therefore, the fourth axiom is satisfied. Therefore, (Z, d) is a metric space.

Example 19
E = R, and

d(p, q) = |p − q|

Now we will check the axioms of the metric space. So the first three axioms are satisfied. Now, we

will check the fourth axiom. So, we have d(p, q) ≤ d(p, r) + d(r, q). Since, d(p, q) = |p − q|, and

d(p, r) = |p − r |, and d(r, q) = |r − q|, then d(p, q) ≤ d(p, r) + d(r, q) is satisfied. Therefore, the

fourth axiom is satisfied. Therefore, (R, d) is a metric space.

5 January 14, 2026

We are more interested in “Euclidean Spaces” today and for this class in general. We can define a metric

space like that as

E = Rn = {(p1, p2, . . . , pn) | pi ∈ R for all i = 1, 2, . . . , n}

and we also have to define a distance function d(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 + . . .+ (pn − qn)2. This

is the Euclidean distance between the two points p and q. Now we have n-dimensional Euclidean space.

Proposition 20
An Euclidean space is a metric space.

Proof. Since we are trying to prove we have to show the four axioms of the metric space. So, we will show

the four axioms of the metric space.

(M1) d(p, q) ≥ 0 for all p, q ∈ E.

(M2) d(p, q) = 0 if and only if p = q.

(M3) d(p, q) = d(q, p) for all p, q ∈ E.

(M4) d(p, q) ≤ d(p, r) + d(r, q) for all p, q, r ∈ E.

So, we will show the four axioms of the metric space. So, we will show the first axiom. So, we have d(p, q) ≥
0 for all p, q ∈ E. Since, d(p, q) =

√
(p1 − q1)2 + (p2 − q2)2 + . . .+ (pn − qn)2, then d(p, q) ≥ 0 is satis-

fied. Therefore, the first axiom is satisfied. So, we will show the second axiom. So, we have d(p, q) = 0 if
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and only if p = q. Since, d(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 + . . .+ (pn − qn)2, then d(p, q) = 0 if and

only if p = q is satisfied. Therefore, the second axiom is satisfied. So, we will show the third axiom. So, we

have d(p, q) = d(q, p) for all p, q ∈ E. Since, d(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 + . . .+ (pn − qn)2, then

d(p, q) = d(q, p) is satisfied. Therefore, the third axiom is satisfied. So, we will show the fourth axiom. So,

we have d(p, q) ≤ d(p, r)+d(r, q) for all p, q, r ∈ E. Since, d(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 + . . .+ (pn − qn)2,

then d(p, q) ≤ d(p, r) + d(r, q) is satisfied. Therefore, the fourth axiom is satisfied. Therefore, (Rn, d) is

a metric space.

Theorem 21 (Cauchy-Schwarz Inequality)

For any real numbers a1, a2, . . . , an and b1, b2, . . . , bn, we have(
n∑
i=1

aibi

)2
≤

(
n∑
i=1

a2i

)(
n∑
i=1

b2i

)

Proof. We proceed by induction on n. For the base case n = 1, we have two real numbers a and b. In this

case, (ab)2 ≤ a2b2, which is clearly true.

Now, suppose n ≥ 2. Consider any pair of indices i < j . Notice that

0 ≤ (aibj − ajbi)2.

Expanding this expression gives

(aibj − ajbi)2 = a2i b2j − 2aiajbibj + a2j b2i ≥ 0,

which implies

2aiajbibj ≤ a2i b2j + a2j b2i .

By summing such terms appropriately and using algebraic manipulation, we can show that

n∑
i=1

a2i b
2
j ≤

n∑
i=1

a2i b
2
i +

n∑
j=1

a2j b
2
j

n∑
i=1

a2i b
2
i ≤

n∑
i=1

n∑
j=1

a2i b
2
j

Now, we will add
∑n
j=1 a

2
j b
2
j to both sides of the inequality.

n∑
i=1

a2i b
2
i +

n∑
j=1

a2j b
2
j ≤

n∑
i=1

n∑
j=1

a2i b
2
j +

n∑
j=1

a2j b
2
j

n∑
i=1

a2i b
2
i +

n∑
j=1

a2j b
2
j ≤

n∑
i=1

n∑
j=1

(a2i b
2
j + a

2
j b
2
i )

n∑
i=1

a2i b
2
i +

n∑
j=1

a2j b
2
j ≤

n∑
i=1

n∑
j=1

a2i b
2
j +

n∑
j=1

a2j b
2
i
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n∑
i=1

a2i b
2
i +

n∑
j=1

a2j b
2
j ≤

n∑
i=1

n∑
j=1

(a2i b
2
j + a

2
j b
2
i )

n∑
i=1

a2i b
2
i +

n∑
j=1

a2j b
2
j ≤

n∑
i=1

n∑
j=1

(a2i b
2
j + a

2
j b
2
i )

(
n∑
i=1

a2i

) n∑
j=1

b2j

 ≤
 n∑
i=1

n∑
j=1

(a2i b
2
j + a

2
j b
2
i )


(
n∑
i=1

a2i

) n∑
j=1

b2j

 ≤
 n∑
i=1

n∑
j=1

a2i b
2
j +

n∑
j=1

a2j b
2
i


(
n∑
i=1

a2i

) n∑
j=1

b2j

 ≤
 n∑
i=1

n∑
j=1

a2i b
2
j +

n∑
j=1

a2j b
2
i


Therefore, we have proved the Cauchy-Schwarz Inequality.

Proposition 22
In Euclidean space, we have d(p, r) ≤ d(p, q) + d(q, r) for all p, q, r ∈ Rn.

Proof. We know that
∑n
j=1 ajbj ≤

√∑n
j=1 a

2
j

√∑n
j=1 b

2
j . From that we get,

n∑
j=1

a2j + 2ajbj + b
2
j ≤

n∑
j=1

a2j + 2

√√√√ n∑
j=1

a2j

√√√√ n∑
j=1

b2j +

n∑
j=1

b2j

n∑
j=1

(aj + bj)
2 ≤

n∑
j=1

a2j + 2

√√√√ n∑
j=1

a2j

√√√√ n∑
j=1

b2j +

n∑
j=1

b2j

n∑
j=1

(aj + bj)
2 ≤ (

√√√√ n∑
j=1

a2j +

√√√√ n∑
j=1

b2j )
2

√√√√ n∑
j=1

(aj + bj)2 ≤

√√√√ n∑
j=1

a2j +

√√√√ n∑
j=1

b2j

and we can write this

||a⃗ + b⃗|| ≤ ||a⃗||+ ||⃗b||

Now we take, aj = pj − qj and bj = qj − rj . Then we get,

||p⃗ − r⃗ || ≤ ||p⃗ − q⃗||+ ||q⃗ − r⃗ ||

Then we can write √√√√ n∑
j=1

(pj − rj)2 ≤

√√√√ n∑
j=1

(pj − qj)2 +

√√√√ n∑
j=1

(qj − rj)2
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8 Open and Closed Sets

Definition 23 (Open Ball)

An open ball in Rn in E with the center p0 ∈ E and radious r > 0 is the set B(p0, r) = {p ∈ E |
d(p, p0) < r}, and we write that has

Br (p0) = B(p0, r) = {p ∈ E | d(p, p0) < r}

, and in E2 this is a disk with center p0 and radius r , and in E3 this is a sphere with center p0 and radius

r , and E1 it is an open interval with center p0 and radius r .

p0

r

Open Ball Br (p0) in R2

p
r

Open Set S with Br (p) ⊂ S

Definition 24 (Open Set)

An open set in Rn is a subset S ⊂ E with the property

∀p ∈ S, ∃r > 0, Br (p) ⊂ S

Proposition 25
Ever open ball is an open set.

Proof. Let Br (p0) be an open ball in Rn. We have to show that Br (p0) is an open set. So, we will take any

p ∈ Br (p0). Then we have d(p, p0) < r . We will take r1 = r − d(p, p0). Then we have Br1(p) ⊂ Br (p0).
Therefore, Br (p0) is an open set.
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p0
r

p

r1

d(p, p0)

Br1(p) ⊂ Br (p0) where r1 = r − d(p, p0)

Proposition 26
For any metric space, E,

1. the subset ∅ is open.

2. the subset E is open.

3. the union of any collection of open subsets of E is open.

4. the intersection of any finite collection of open subsets of E is open.

Proof. We will prove each of the four properties one by one.

• ∀p ∈ ∅, ∃r > 0, Br (p) ⊂ ∅. Since, ∅ is a subset of any set, and ∅ is open, we have that ∅ is open.

• ∀p ∈ E, ∃r > 0, Br (p) ⊂ E. Since, E is a subset of any set, and E is open, we have that E is open.

•
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